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Abstract

We consider estimation and test problems for some semiparametric two-sample density ratio models. The profile empirical
likelihood (EL) poses an irregularity problem under the null hypothesis that the laws of the two samples are equal. We show that
a dual form of the profile EL is well defined even under the null hypothesis. A statistical test, based on the dual form of the EL
ratio statistic (ELRS), is then proposed. We give an interpretation for the dual form of the ELRS through �-divergences and duality
techniques. The asymptotic properties of the test statistic are presented both under the null and the alternative hypotheses, and
approximation of the power function of the test is deduced.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and notation

In this paper, we consider the following problems: two-sample test for comparing two populations and estimation of
the parameters for some semiparametric density ratio models. We dispose of two samples: X1, . . . , Xn0 with distribution
P and Y1, . . . , Yn1 with distribution Q. We consider the following semiparametric density ratio model:

dQ

dP
(x) := exp{�T + �T

T r(x)}, (1.1)

where �T
T := (�T , �T

T ) is the true unknown value of the parameter which we suppose to belong to some open set
� ⊂ R1+d and r(·) is a known function with values in Rd . The two densities are assumed unknown but are related,
however, through a tilt (or distortion) which determines the difference between them. For simplicity, we sometimes
write m(�, x) instead of exp{� + �Tr(x)}. The supports of the two laws Q and P may be known or unknown, discrete
or continuous.

The density ratio model has attracted much attention recently, because it relaxes several conventional assumptions
in the context of multi-sample problems and because fitting can be easily implemented in standard software.
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For an application of the density ratio model to meteorological data, see Fokianos et al. (1998). For further applications
of model (1.1), see Fokianos et al. (2001) and Qin et al. (2002).

It is useful to say that expression (1.1) can be viewed as a biased sampling model with weights depending on
parameters. Vardi (1982, 1985) and Gill et al. (1988) have discussed inference in biased sampling models with known
weight functions. Gilbert (2000) and Gilbert et al. (1999) considered weight functions depending on an unknown finite
dimensional parameter.

We now give some statistical examples and motivations for model (1.1).

1.1. Logistic model

Model (1.1) can be viewed as a generalization of logistic regression (taking r(x) = x, see Qin, 1998). This kind of
model has been widely used in statistical applications for the analysis of binary data (see e.g.,Agresti, 1990; Hosmer and
Lemeshow, 1999, 2000). One of the major reasons that the logistic regression model has seen such a wide use, especially
in epidemiologic research, is the ease of obtaining adjusted odds ratios from the estimated slope coefficients when
sampling is performed conditional on the outcome variables, as in a case-control study. In a case-control study the binary
outcome variable is fixed by stratification. In this type of study design, two random samples of sizes n0 and n1 are chosen
from the two strata defined by the outcome variable, i.e., from the subsets of the population with y=0 and 1, respectively.

For models (1.1), when the two samples X1, . . . , Xn0 and Y1, . . . , Yn1 are independent, Qin (1998) presents an
estimation procedure of �T based on the empirical likelihood (EL) approach (see Owen, 1988, 1990, 2001), using
the likelihood of the independent variables X1, . . . , Xn0 , Y1, . . . , Yn1 . However, an important special case of the case-
control study is the matched (or paired) study. In this design, subjects are stratified on the basis of variables believed
to be associated with the outcome (an example of stratification variable is the age for each of the individuals in the
survey). Within each stratum, samples of cases (y = 1) and controls (y = 0) are chosen; the most common matched
design includes one case and one control per stratum and is thus referred as 1–1 matched study. In this important case,
the asymptotic results presented in Section 3 hold with some modifications.

1.2. Comparison of two populations

In applications, we often come across with the problem of comparing two laws. The use of the well known t-test
requires to assume that both samples are normally distributed with unknown means and common known or unknown
variance. The t-test enjoys several optimal properties, for example it is the uniformly most powerful unbiased test (see
e.g., Lehmann, 1986). If both Q and P are normally distributed with equal variance

Q = N (�2, �
2) and P = N (�1, �

2),

then, the ratio dQ/dP takes the form

dQ

dP
(x) = exp{� + �x} where � = �2

1 − �2
2

2�2 and � = �2 − �1

�2 .

It follows that testing the hypothesis H0 : Q = P is equivalent to testing the parametric hypothesis H0 : � = 0. We
underline that � = 0 implies � = 0.

Kay and Little (1987) and Fokianos (2003) observed that there are cases in which the choice

dQ

dP
(x) = exp{� + �r(x)},

where r(·) is an arbitrary but known function, is more appropriate. For example, if the two distributions are lognormal
or gamma, r(x) = log(x) is the right choice. We underline that there are no normal cases in which we have r(x) = x

(for example, when we consider the ratio of two exponential densities), so this approach generalizes the classical
normal-based one-way analysis of variance in the sense that it obviates the need for a completely specified parametric
model, see Fokianos et al. (2001).

When the two samples X1, . . . , Xn0 and Y1, . . . , Yn1 are independent, Fokianos et al. (2001) present a statistical test,
for the null hypothesis H0 : Q = P or equivalently H0 : �T = 0, where the test statistic is based on a “constrained”
EL estimate of the parameter �T (see Qin, 1998) and an empirical estimate of the limit variance.
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In the case when the semiparametric assumption (1.1) fails, the test commonly used is the nonparametric Wilcoxon
rank-sum (see e.g., Randles and Wolfe, 1979; Hollander and Wolfe, 1999). We expect it not to be powerful, since it
does not use the model (1.1).

For the model (1.1), the EL ratio statistic (ELRS) is not well defined under the null hypothesis H0 : Q = P (see
Section 1.3 below). This problem has also been observed by Zou et al. (2002) in the context of a semiparametric
mixture models with known weights (see Zou et al., 2002, Theorem 1). We propose to use, instead of the ELRS, its
“dual” form (see (2.7)) (to perform a test of the null hypothesis H0 : Q = P ) which is well defined regardless of the
null hypothesis. Simulation results, presented in Section 4 below, show that the observed level of the test based on the
statistic (2.7) converges (to the nominal level) better than the observed level of the test proposed by Fokianos et al.
(2001). Using �-divergences and duality techniques, we give an interpretation for the statistic (2.7), the dual form of
the ELRS; see (2.13). This interpretation allows us to give the asymptotic law of the proposed test statistic under the
alternative hypothesis. We apply this result to give approximation of the power function of the test in a similar way to
Morales and Pardo (2001) who gave some approximations of the power functions of �-divergences tests in parametric
models. Duality technique has been used by Broniatowski (2003) in order to estimate the Kullback–Leibler divergence
without making use of any partitioning or smoothing. It has been used also by Keziou (2003) and Broniatowski and
Keziou (2003) in order to estimate �-divergences between probability measures (without smoothing), and to introduce
a new class of estimates and test statistics for discrete or continuous parametric models extending maximum likelihood
approach; the use of the duality technique in the context of �-divergences allows also to study the asymptotic properties
of the test statistics (including the likelihood ratio one) both under the null and the alternative hypotheses. Recall that
a �-divergence between two probability measures Q and P, when Q is absolutely continuous with respect to P, is
defined by

�(Q, P ) :=
∫

	(dQ/dP) dP , (1.2)

where 	 is a real nonnegative convex function satisfying 	(1) = 0. Note that �(Q, P ) is nonnegative, �(Q, P ) = 0
when Q = P . Further, if 	 is strictly convex on a neighborhood of one, then �(Q, P ) = 0 if and only if Q = P ; we
refer to Liese and Vajda (1987) for a systematic theory of �-divergences.

The rest of the paper is organized as follows: we end this section recalling the estimation method proposed by
Qin (1998). In Section 2, we show that the irregularity problem of the profile EL can be adjusted in the context of
model (1.1). We next give a regularized version of the profile EL using duality techniques. A statistical test, for the
null hypothesis H0 : Q = P , is then proposed. Another point of view at the test statistic is given using �-divergences
and duality techniques. In Section 3, we study the asymptotic behavior of the proposed test statistic under the null and
the alternative hypotheses with independent samples, and we give approximation to the power function which leads
to approximation to the sample sizes n0 and n1 guaranteeing a desired power for a given alternative. In Section 4, we
present simulation results. Concluding remarks and possible developments are presented in Section 5. In the sequel,
we sometimes write Pf instead of

∫
f (x) dP(x) for any function f and any measure P.

1.3. The profile EL and its irregularity under the null hypothesis H0 : Q = P

In the present setting, the estimation method proposed by Qin (1998), which is based on the EL approach (see
Owen, 1988, 1990, 2001), can be summarized as follows. For any � ∈ �, the EL of the two samples X1, . . . , Xn0 and
Y1, . . . , Yn1 , if they are independent, is

L(�) :=
n0∏
i=1

p(Xi)

n1∏
j=1

q(Yj ).

For simplicity, denote by (t1, . . . , tn) the combined sample (X1, . . . , Xn0 , Y1, . . . , Yn1), where n := n0 + n1. Hence,
the log-likelihood can be written as

l(�, p) :=
n∑

i=1

log pi +
n∑

i=n0+1

log[m(�, ti)],
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where pi : =p(ti). The profile log-likelihood (in �) is then

l(�) := sup
p∈C�

l(�, p), (1.3)

where p is constrained to the set

C� :=
{

p ∈ R∗+
n such that

n∑
i=1

pi = 1 and
n∑

i=1

pi[m(�, ti) − 1] = 0

}
.

The EL estimate of �T , proposed by Qin (1998), is

�̃ := arg sup
�∈�

l(�).

Qin (1998) has proved that the estimate �̃ is optimal (in the sense of Godambe, 1960), in the class of all estimates
obtained by unbiased estimating functions, when m(�, x) takes the form exp{� + �Tr(x)} and � is unknown (see Qin,
1998, Theorem 3).

For a given � ∈ �, the profile log-likelihood l(�) is well defined (and finite) if and only if

there exists p ∈ C� such that |l(�, p)| < ∞. (1.4)

This condition means that 0 is inside the convex hull generated by the points [m(�, t1) − 1], . . . , [m(�, tn) − 1], i.e.,

min
1� i �n

[m(�, ti) − 1] < 0 < max
1� i �n

[m(�, ti) − 1].

So, when �T �= 0 and if P is not degenerate, using similar arguments to those in Zou et al. (2002, Theorem 1), we
can show that there exists a neighborhood of �T , say N(�T ), such that for all � ∈ N(�T ), the assumption (1.4) holds
as n0 → ∞. Hence, � ∈ N(�T ) �→ l(�) is well defined for n0 sufficiently large. However, when Q = P (i.e., when
�T = 0), then obviously the set C� is empty for all � = (�, �T)T ∈ � with � �= 0 and � = 0. So, when Q = P

(i.e., when �T = 0), there exists no neighborhood N(�T ) of �T such that the profile empirical log-likelihood function
� �→ l(�) is well defined on all N(�T ). Consequently the estimate �̃ is not well defined also in this case. In the following
section, we will show, using some arguments of duality theory, that this problem can be adjusted in the context of the
model (1.1).

2. Adjustment of the profile EL

If the assumption (1.4) holds, then l(�) is finite, and the unique “optimal solution”, say p (i.e., the value of p which
yields the supremum in (1.3)), as an explicit expression of (1.3) can be derived by a Lagrange multiplier argument
and the Kuhn–Tucker Theorem (see e.g., Rockafellar, 1970, Section 28). In fact, the “dual” problem associated to the
“primal” problem (i.e., the optimization problem (1.3)) can be written as follows:

inf

0,
1∈R

⎧⎨⎩−
0 − n −
n∑

i=1

log(−
0 − 
1[m(�, ti) − 1]) +
n∑

i=n0+1

log[m(�, ti)]
⎫⎬⎭ , (2.1)

where log(.) is the function defined on R by log(x)=log x if x > 0 and log(x)=−∞ elsewhere. So, by the Kuhn–Tucker
Theorem, under condition (1.4), the infimum in (2.1) is attained, and the following equality

sup
p∈C�

l(�, p) = inf

0,
1∈R

⎧⎨⎩−
0 − n −
n∑

i=1

log(−
0 − 
1[m(�, ti) − 1]) +
n∑

i=n0+1

log[m(�, ti)]
⎫⎬⎭

holds. The dual optimal solution, say (
0, 
1) (i.e., the argument infimum in (2.1)), can be derived by differentiation.
Furthermore, (
0, 
1) and p satisfy

pi = 1

−
0 − 
1[m(�, ti) − 1] , ∀i = 1, . . . , n.
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Hence, using the fact that p satisfies the constraints, we obtain 
0 = −n and 
1 is the solution (in 
1) of the equality

n∑
i=1

m(�, ti) − 1

n − 
1[m(�, ti) − 1] = 0.

Finally, under condition (1.4), the equality

l(�) := sup
p∈C�

l(�, p) = inf

∈R

⎧⎨⎩−
n∑

i=1

log[n(1 + 
[m(�, ti) − 1])] +
n∑

i=n0+1

log[m(�, ti)]
⎫⎬⎭ (2.2)

holds with finite values, and the unique optimal solution (p1, . . . , pn) exists and it is given by

pi = 1

n

1

1 + 
[m(�, ti) − 1] , ∀i = 1, . . . , n,

where 
 is the unique dual optimal solution in (2.2). Hence, the EL estimate �̃ of �T can be written as follows:

�̃ = arg sup
�∈�

inf

∈R

⎧⎨⎩−
n∑

i=1

log[n(1 + 
[m(�, ti) − 1])] +
n∑

i=n0+1

log[m(�, ti)]
⎫⎬⎭ . (2.3)

By differentiation with respect to � and 
, we can see by simple calculus that the Lagrange multiplier 
 in (2.3) has the
explicit solution 
(�̃) = n1/n which does not depend on the data. Hence, the value of the log-likelihood (2.2) in �̃ is

l(�̃) = −n log n −
n∑

i=1

log
(

1 + n1

n
[m(�̃, ti) − 1]

)
+

n∑
i=n0+1

log[m(�̃, ti)], (2.4)

and the EL estimate �̃ can be written as

�̃ = arg sup
�∈�

⎧⎨⎩−n log n −
n∑

i=1

log
(

1 + n1

n
[m(�, ti) − 1]

)
+

n∑
i=n0+1

log[m(�, ti)]
⎫⎬⎭ . (2.5)

Under the null hypothesis H0 : Q = P , i.e., when �T = 0, the profile log-likelihood l(�) is not defined for some � (see
Section 1.3). So, in view of (2.4) and (2.5), we propose to consider, instead of l(�), the dual form

ld (�) := −n log n −
n∑

i=1

log
(

1 + n1

n
[m(�, ti) − 1]

)
+

n∑
i=n0+1

log[m(�, ti)],

which is well-defined for all � ∈ � regardless of the null hypothesis H0 : Q = P , and to redefine the EL estimate �̃ as
follows:

�̂ := arg sup
�∈�

ld (�). (2.6)

Note that, under condition (1.4), we have �̂ = �̃ and ld (̂�) = l(�̃). Now, we give an interpretation to the dual form

Sn := 2Wd(̂�) := 2

[
sup
�∈�

ld (�) + n log n

]
(2.7)

of the EL ratio test statistic (ELRTS)

2W(�̃) := 2

[
sup
�∈�

l(�) + n log n

]
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(associated to the null hypothesis H0 : Q = P ). First, denote �n := n1/n0, an := n�n(1 + �n)
−2, and let Qn1 and Pn0

to be, respectively, the empirical measures associated to the samples Y1, . . . , Yn1 and X1, . . . , Xn0 , namely

Qn1(·) := 1

n1

n1∑
i=1

�Yi
(·) and Pn0(·) := 1

n0

n0∑
i=1

�Xi
(·),

with �x(·) denoting the Dirac measure at point x, for all x. By simple calculus, we can show that the statistic (2.7) can
be written as

Sn = 2an sup
�∈�

{∫
f�n

(�, x) dQn1(x) −
∫

g�n
(�, x) dPn0(x)

}
, (2.8)

where

f�n
(�, x) := (1 + �n) log[m(�, x)] − (1 + �n) log[1 + �nm(�, x)] + (1 + �n) log(1 + �n)

and

g�n
(�, x) := 1 + �n

�n

log[1 + �nm(�, x)] − 1 + �n

�n

log(1 + �n).

In (2.8), the sequence an is a normalizing term and the second term can be seen as an empirical estimate of

sup
�∈�

{∫
f�(�, x) dQ(x) −

∫
g�(�, x) dP(x)

}
, (2.9)

where � := limn→∞ �n (which we suppose to be positive),

f�(�, x) := (1 + �) log[m(�, x)] − (1 + �) log[1 + �m(�, x)] + (1 + �) log(1 + �) (2.10)

and

g�(�, x) := 1 + �

�
log[1 + �m(�, x)] − 1 + �

�
log(1 + �). (2.11)

On the other hand, using the so-called “dual representation of �-divergences” (see Keziou, 2003, Theorem 2.1;
Broniatowski and Keziou, 2006, Theorem 4.4) and choosing the class of functions

F := {x �→ 	�
�
′
(m(�, x)); � ∈ �},

we can prove the equality

sup
�∈�

{∫
f�(�, x) dQ(x) −

∫
g�(�, x) dP(x)

}
=

∫
	�

�

(
dQ

dP

)
dP , (2.12)

where 	�
� is the nonnegative real strictly convex function defined on R+ by

	�
�(x) := (1 + �)

[
x log x − 1 + �x

�
log(1 + �x) + 1

�
log(1 + �) + x log(1 + �)

]
,

which is a member of the class of �-divergences (1.2). We denote by ��(Q, P ) this divergence. In other words, by
(2.8), (2.9) and (2.12), a−1

n Wd (̂�) can be seen as an empirical estimate (which we denote by �̂�(Q, P )) of ��(Q, P ),
the ��-divergence between Q and P, i.e., �̂�(Q, P ) := (2an)

−1Sn. Since ��(Q, P ) is nonnegative and takes value 0
only when Q = P , it is reasonable to perform a test that rejects the null hypothesis H0 : Q = P when the statistic

Sn = 2an�̂
�(Q, P ) = 2an sup

�∈�

{∫
f�n

(�, x) dQn1(x) −
∫

g�n
(�, x) dPn0(x)

}
, (2.13)

see (2.7) and (2.8), takes large values.
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The estimate �̂ of �T (see (2.6)) can be written then as follows:

�̂ = arg sup
�∈�

{∫
f�n

(�, x) dQn1(x) −
∫

g�n
(�, x) dPn0(x)

}
.

On the other hand, by Keziou (2003, Theorem 2.1) and Broniatowski and Keziou (2006, Theorem 4.4), we can prove
that the supremum in (2.9) is unique and reached at � = �T . This indicates that the estimate �̂ of �T may converge (as
M-estimate) to �T even when the samples are paired.

3. Asymptotic behavior of the estimate and test statistic under the null and the alternative hypotheses, and
approximation of the power function

In this section, for independent samples, we give the asymptotic properties of the estimate �̂ (of the parameter �T ) and
the test statistic (2.13) both under the null and the alternative hypotheses. As an application, we obtain approximation
of the power function for a given alternative. In all the sequel, f ′(�, x) and f ′′(�, x) denote, respectively, the gradient
and the Hessian of f at the point �, for all x and any function f. |.| denotes the Euclidean norm. Let �n1

:= n1/n and
�n0

:= n0/n, and assume that �n1
→ �1 > 0 and �n0

→ �0 > 0 when n → ∞. Denote also

l�� (�) := an[Qn1f�n
(�) − Pn0g�n

(�)].
In all the sequel, for simplicity, we write f and g instead of f� and g� defined in (2.10) and (2.11).

We give our results under the following assumptions:

(A.1) There exists a neighborhood N(�T ) of �T such that the third order partial derivative functions {x �→ (�3/

��i��j��k)f (�, x); � ∈ N(�T )} (resp. {x �→ (�3/��i��j��k)g(�, x); � ∈ N(�T )}) are dominated by some
function Q-integrable (resp. some function P-integrable).

(A.2) The integrals Q|f ′(�T )|2, P |g′(�T )|2, Q|f ′′(�T )| and P |g′′(�T )| are finite, and the matrix [Qf ′′(�T )−Pg′′(�T )]
is nonsingular.

Theorem 3.1. Assume that assumptions (A.1–A.2) hold.

(a) Let B(�T , n−1/3) := {� ∈ �; |�−�T |�n−1/3}. Then as n → ∞, with probability one, l�� (�) attains its maximum

value at some point �̂ in the interior of the ball B(�T , n−1/3), and the estimate �̂ satisfies l′�� (̂�) = 0.

(b)
√

n(̂�−�T ) converges in distribution to a centered multivariate normal random variable with covariance matrix

CM = [−Qf ′′(�T ) + Pg′′(�T )]−1 · [�−1
1 (Qf ′(�T )f ′(�T )T

− Qf ′(�T )Qf ′(�T )T) + �−1
0 (Pg′(�T )g′(�T )T

− Pg′(�T )Pg′(�T )T)] · [−Qf ′′(�T ) + Pg′′(�T )]−1. (3.1)

If Q = P , then the limit covariance matrix is

CM = (1 + �)2

�

[
1 PrT

Pr P(rrT)

]−1

. (3.2)

(c) Under the null hypothesis H0 : Q = P , the statistic Sn converges in distribution to a 2 random variable with d
degrees of freedom.

Proof. (a) We prove this part using some similar arguments to those in Qin and Lawless (1994) and Zou et al. (2002).
Simple calculus gives

Qf ′(�T ) − Pg′(�T ) = 0 (3.3)

and

Qf ′′(�T ) − Pg′′(�T ) = −P(m′(�T )m′(�T )T	�
�
′′
(m(�T ))) =: −V1(�T ). (3.4)
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Observe that the matrix V1(�T ) is symmetric and positive since the second derivative 	�
�
′′ is nonnegative by the

convexity of 	�
�. Let Un(�T ) := Qn1f

′(�T ) − Pn0g
′(�T ) and use (3.3) and condition (A.2) in connection with the

Central Limit Theorem to see that
√

nUn(�T ) → N (0, V2(�T )), (3.5)

with V2(�T ) := �−1
1 [Q(f ′f ′T)−Qf ′Qf ′T]+�−1

0 [P(g′g′T)−Pg′Pg′T].Also, let Vn(�T ) := Qn1f
′′(�T )−Pn0g

′′(�T )

and use (A.2) and (3.4) in connection with the Law of Large Numbers to conclude that

Vn(�T ) → −V1(�T ) (a.s.). (3.6)

Now, for �= �T +un−1/3 with |u|�1 consider a Taylor expansion of l�� (�) around �T , and use (A.1) and the fact that

l′�� (�) = n�n(1 + �n)
−2Un(�) with �n → � > 0, to see that (a.s.)

l�� (�) − l�� (�T ) = n2/3�(1 + �)−2uTUn + 2−1n1/3�(1 + �)−2uTVnu + O(1)

uniformly on u with |u|�1. Now, use (3.6) and the fact that Un = O(n−1/2(log log n)1/2) (a.s.) to conclude that

l�� (�) − l�� (�T ) = O(n1/6(log log n)1/2) − 2−1�(1 + �)−2uTV1un1/3 + O(1) (a.s.).

Hence, uniformly on the surface of the ball B(�T , n−1/3) (i.e., uniformly on u with |u| = 1), we have

l�� (�) − l�� (�T )�O(n1/6(log log n)1/2) − 2−1�(1 + �)−2cn1/3 + O(1) (a.s.), (3.7)

where c is the smallest eigenvalue of the matrix V1. Note that c is positive since the matrix V1 defined in (3.4) is positive
definite (it is symmetric, positive and nonsingular by assumption A.2). In view of (3.7), by the continuity of � �→ l�� (�),

it holds that as n → ∞, with probability one, l�� (�) attains its maximum value at some point �̂ in the interior of the

ball B(�T , n−1/3), and therefore the estimate �̂ satisfies l′�� (̂�) = 0 and �̂ − �T = O(n−1/3).

(b) Using the fact that l′�� (̂�) = 0 and a Taylor expansion of l′�� (̂�) around �T , we obtain

0 = a−1
n l′�� (̂�) = a−1

n l′�� (�T ) + a−1
n l′′�� (�T )(̂� − �T ) + op(n−1/2).

Hence,
√

n(̂� − �T ) = −V −1
n (�T )

√
nUn(�T ) + op(1), (3.8)

where Un and Vn are defined as in the proof of part (a). Using (3.5) and (3.6), by application of Slutsky Theorem, we
may conclude then

√
n(̂� − �T ) → N (0, CM) where CM is given by (3.1). When Q = P , simple calculus leads to

(3.2).
(c) First, recall that Q = P implies that �T = 0. Hence, from (3.8) and using the convergence (3.6), we get

�̂ = V −1
1 (0)Un(0) + op(n−1/2), (3.9)

where V1(0) = P [(1, rT)T(1, rT)], Un(0) = (0, Wn(0)T)T and Wn(0) := Qn1(�/��)f (0) − Pn0(�/��)g(0). On the
other hand, a Taylor expansion of 2l�� (̂�) around �T = 0, using the fact that l�� (0) = 0, gives

2l�� (̂�) = 2l′�� (0)T�̂ + �̂Tl′′�� (0)̂� + op(1)

= 2anUn(0)T�̂ + an̂�
TVn(0)̂� + op(1)

= 2anUn(0)T�̂ − an̂�
TV1(0)̂� + op(1).

Combine this with (3.9) to conclude that

2l�� (̂�) = anWn(0)TV −1
P Wn(0) + op(1) where VP := P(rrT) − (P r)(P r)T.

It follows that 2l�� (̂�) converges in distribution to a2 variable with d degrees of freedom, since
√

anWn(0) → N (0, VP )

in distribution. �
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In order to give the asymptotic properties of the test statistic Sn under the alternative hypothesis H1 : Q �= P , we
need the following additional assumption pertaining to the function f and g defined in (2.10) and (2.11).

(A.3) The integrals Q(f (�T )2) and P(g(�T )2) are finite.

Theorem 3.2. Assume that assumptions (A.1)–(A.3) hold. Then, under the alternative hypothesis H1 : Q �= P , we
have that

√
an[(2an)

−1Sn − ��(Q, P )]
converges in distribution to a centered normal random variable with variance

�2(�T ) := �0[Q(f 2) − (Qf )2] + �1[P(g2) − (Pg)2].

Proof. First, observe that when Q �= P , then �T �= 0 and �T = (�T , �T
T )T �= 0. Furthermore,

��(Q, P ) =
∫

	�
�(dQ/dP) dP =

∫
	�

�(m(�T )) dP = Qf (�T ) − Pg(�T ) (3.10)

which is finite (by assumption (A.3)) and positive. A Taylor expansion of (2an)
−1Sn = a−1

n l�� (̂�) around �T gives

(2an)
−1Sn = Qn1f (�T ) − Pn0g(�T ) + op(n−1/2).

Combine this with (3.10) to conclude that
√

an[(2an)
−1Sn − ��(Q, P )] = √

an[Qn1f (�T ) − Qf (�T )] − √
an[Pn0g(�T ) − Pg(�T )] + op(1)

which converges in distribution to a centered normal variable with variance

�2(�T ) = �0[Q(f 2) − (Qf )2] + �1[P(g2) − (Pg)2]. �

Remark 3.1. Using Theorem 3.1 part (c), we propose to reject the null hypothesis H0 : Q = P if Sn > 2
� (d), where

2
� (d) is the (1− �)-quantile of the 2 distribution with d degrees of freedom. This leads to a test asymptotically of level

�. The asymptotic result in Theorem 3.2 allows to give approximation of the power function for a given alternative: for
a given �T �= 0, we obtain for the power function �T �→ P�T

{Sn > 2
� (d)} the following approximation:

P�T
{Sn > 2

� (d)} ≈ 1 − FN
( √

an

�̂(�T )
[(2an)

−12
� (d) − Hn(�T )]

)
,

where FN (.) is the cumulative distribution function of a normal random variable with mean zero and variance one,

�̂(�T )2 := �n0
[Qn1(f (�T )2) − (Qn1f (�T ))2] + �n1

[Pn0(g(�T )2) − (Pn0g(�T ))2],
and Hn(�T ) := Qn1f (�T )−Pn0g(�T ). Note also that the power �(�T ), by the asymptotic result in Theorem 3.2, tends
to one, as n → ∞, under the alternative hypothesis H1 : Q �= P .

4. Simulation results

In this section, we present some simulation results concerning the testing problem of the null hypothesis of homo-
geneity (see Example 1 below). Various examples of the choices of m(�, x) can be found in the papers by Qin (1998),
Kay and Little (1987) and Cox and Ferry (1991). In all examples, we consider the nominal level 5%; it is represented,
in all figures, by a horizontal dotted line. The value of �T corresponding to H0 in all cases is represented by a vertical
dotted line. The power is plotted as a function of �T ; note that for any test, the power associated to the value of �T

corresponding to the null hypothesis H0 is the observed level of the test. Example 2 concerns the power approximation
discussed in Remark 3.1.
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Fig. 1. Example 1a—two normal populations.

4.1. Example 1—comparison of two populations

We compare the power function of the ELRT, defined in (2.13), with the power function of the two-sample t-test,
Wilcoxon rank-sum test and Fokianos et al. (2001) test. We recall that Fokianos et al. (2001) test statistic is based on a
constrained EL estimate of the parameter (see Qin, 1998) and an empirical estimate of its limit variance. Three cases
are considered. In the first case, we have X ∼ N (�, 1), Y ∼ N (0, 1) and m(�, x) = exp{� + �x}. In the second case,
we have two lognormal populations, X ∼ LN(�, 1), Y ∼ LN(0, 1) and m(�, x) = exp{� + � log x}. In the third case,
we have two gamma populations X ∼ Ga(3+�, 1), Y ∼ Ga(3, 1) and m(�, x)= exp{�+� log x}. The power function
is plotted for sample sizes n0 = n1 = 50. Each power entry was obtained from 1000 independent runs.

Under normal and variance equality assumptions, we observe (see Fig. 1) that the four tests are very similar. The
fact that our test displays more power than the t-test in the cases of lognormal (see Fig. 2) and gamma populations (see
Fig. 3) shows that a departure from the classical normal and variance equality assumptions can considerably weaken the
t-test. Note that the ELRT is not dominated by the t-test in the present normal example with equal variances. Apparently,
the Wilcoxon rank-sum test has less power than the test provided here in all the three cases considered. Finally, note
that in the gamma case (see Fig. 3) the observed level of the test proposed by Fokianos et al. (2001) is far from the
nominal level 5%. We conclude that the ELRT (2.13) is more convenient.

4.2. Example 2—approximation of the power function

In the context of the model m(�, x) = exp{� + �x} we consider the problem of testing

H0 : Q = P versus H1 : Q �= P

or equivalently

H0 : �T = 0 versus H1 : �T �= 0
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Fig. 2. Example 1b—two lognormal populations.
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Fig. 3. Example 1c—two gamma populations.
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Fig. 4. Example 2—approximation of the power function.

based on the test statistic Sn (2.13). In this example, we consider X ∼ N (�, 1) and Y ∼ N (0, 1). We study numerically
the accuracy of the power approximation given in Remark 3.1. We recall that the approximation of the power function
�T �→ P�T

(Sn �2
0.05(1)) is

approx(�T ) = 1 − FN
( √

an

�̂(�T )
[(2an)

−12
0.05(1) − Hn(�T )]

)
, (4.1)

where FN (.) is the cumulative distribution function of a standard normal variable,

�̂(�T )2 := �n0
[Qn1(f (�T )2) − (Qn1f (�T ))2] + �n1

[Pn0(g(�T )2) − (Pn0g(�T ))2],
and Hn(�T ) := Qn1f (�T ) − Pn0g(�T ). The power function is plotted for sample sizes n0 = n1 = 30, n0 = n1 = 50
and n0 = n1 = 100, and for different values of �T . Each power entry was obtained from 1000 independent runs. The
approximation (4.1) is plotted as a function of �T by a dotted line; Hn and �̂, in (4.1), are calculated (from 1000
simulations) with sample sizes n0 = n1 = 30, n0 = n1 = 50 and n0 = n1 = 100.

We observe (see Fig. 4) that the approximation is accurate for alternatives which are not very “near” to the null
hypothesis even for moderate sample sizes.
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5. Concluding remarks and possible developments

We have addressed the problems of estimation and test of homogeneity in semiparametric two-sample density ratio
models. The profile EL poses an irregularity problem under the null hypothesis H0 that the two laws of the two samples
are equal. We have showed that the dual form of the profile EL is well defined even under the null hypothesis; then we
have proposed a test of homogeneity based on the dual form of the EL ratio statistic. We have proved, using the dual
representation of �-divergences, that the test statistic can be seen as an estimate of the particular divergence �� between
the two laws, and that the EL estimate �̂ of �T can be seen as the dual optimal solution in the dual representation of the
��-divergence. The advantage of this interpretation is twice:

• It permits to obtain the limit law of the test statistic under the alternative hypothesis which we use to give
approximation of the power function of the test.

• It suggests to generalize the test and the estimate of the parameter to a class of tests and to a class of estimates
using other divergences, and it would be interesting in this case to give how to choose the divergence which leads
to an “optimal” (in some sense) estimate or test in terms of efficiency and robustness.

In the important case of paired samples, the asymptotic results presented in Section 3 hold with some modifications.
The method can be generalized to corresponding problems involving more than two samples. Simple and composite
tests on the parameter and approximations of the corresponding power functions can be obtained in a similar way. It
would be worthwhile also to involve the problem of Bartlett correctability of the test statistic Sn. These developments
will be reported in future communications.
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