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Abstract

An m-sample semiparametric model in which the ratio of m — 1 probability density functions with respect to the mth is of a
known parametric form without reference to any parametric model is considered. This model arises naturally from retrospective
studies and multinomial logistic regression model. A projection density estimator is constructed by smoothing the increments of
the maximum semiparametric empirical likelihood estimator of the underlying distribution function, using the combined data from
all the samples. Some asymptotic results on the proposed projection density estimator are established. Connections between our
estimator and kernel semiparametric density estimator are pointed out. Some results from simulations and from the analysis of two
real data sets are presented.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Consider m independent random samples x;i, ..., Xjy;, I = 1, ..., m with probability densities g; (x) = dG;(x),
i=1,...,m,respectively.
We consider the following semiparametric density ratio model:
gix)=wkx,0)gux), i=1,...,m—1, (1)
where w is a known positive function and 0y, k =1, ..., m — 1 is a vector of parameters with finite dimension equal to

d. The common support of the laws G; may be known or unknown, discrete or continuous. All the m density functions
are assumed unknown but are related, however, through a tilt (or distortion) which determines the difference between
them.

The density ratio model has attracted much attention recently, because it relaxes several conventional assumptions
in the context of multisamples problems and because fitting can be easily implemented in standard software.

Model (1) can be viewed as a generalisation of multinomial logistic regression (taking w (x, 0;) =exp{0;; +x'0,;},
where 0 ; is a scalar parameter and 0, ; is a (d — 1)-vector of parameters, fori =1, ..., m — 1, see Fokianos, 2004).
This kind of model is one of the most popular choices for nominal data analysis, with several applications especially in
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econometrics and biostatistics. This approach also generalizes the classical normal-based one-way analysis of variance
in the sense that it obviates the need for a completely specified parametric model, see Fokianos et al. (2001). Moreover,
expression (1) can also be seen as a biased sampling model with weights depending on parameters. Vardi (1982), Vardi
(1985) and Gill et al. (1988) have discussed inference in biased sampling models with known weight functions. Gilbert
(2000) and Gilbert et al. (1999) considered weight functions depending on an unknown finite dimensional parameter,
and discussed the identifiability problem of G,, and the maximum likelihood estimation of 0;, k =1,...,m — 1 and
G, (see Gilbert et al., 1999, Section 3; Gilbert, 2000, Section 1.1).

For an application of the density ratio model to meteorological data, see Fokianos et al. (1998). For further applications
of model (1), see Fokianos et al. (2001), Qin et al. (2002), Fokianos (2004), Cheng and Chu (2004) and Qin and Zhang
(2005).

Fokianos et al. (2001) and Keziou and Leoni-Aubin (2005) proposed homogeneity tests in the context of density
ratio models, respectively, based on a Wald-type test statistic and on a likelihood ratio test statistic.

Inference for parameters of model (1) in the case m = 2 has been studied by Qin (1998), Keziou and Leoni-Aubin
(2005, 2007).

The aim of this contribution is to estimate unknown densities in two steps, using the combined data from all the
samples, hence taking the information contained in all samples into account. First, applying the empirical likelihood
method to model (1), then, using a projection density estimator (see also Aubin and Leoni Aubin, 2007).

A particular case of model (1) has been suggested by Efron and Tibshirani (1996) for density estimation. Combining
parametric and nonparametric methods of density estimation, they developed a new method for estimating an exponential
family of probability densities

80(x) = go(x) exp{fo + s(x)01},

based on a random sample x1, ..., x,. Here gg is a carrier density, s is a vector of sufficient statistics and 0 = (0y, 01)’
is a parameter vector. Efron and Tibshirani (1996) proposed a two steps estimation procedure of gy(x). First, they
estimated go(x) by using a kernel density estimator and then they fitted a parametric family. Efron and Tibshirani’s
method has also been extended to investigate density differences in multisample situations. They used the exponential
family model for the different densities with a shared carrier.

Recent works (Cheng and Chu, 2004; Fokianos, 2004; Qin and Zhang, 2005) have adopted a quite different approach,
using an m-sample (Fokianos, 2004) or a two-sample (Cheng and Chu, 2004; Qin and Zhang, 2005) density ratio model.
First, they estimated the parameters’ values by maximising a semiparametric likelihood function, and then they obtained
the maximum semiparametric likelihood estimator of the unknown distribution function by putting weights on all the
observations. Given this inference output, they smoothed the increments of the estimated distribution function to obtain
a new kernel density estimator. Specifically, Fokianos (2004) showed that in density ratio model (1), the pooled data
leads to more efficient kernel density estimators for the unknown distributions, in the sense that they have the same
amount of bias but they are less variable than traditional kernel density estimators. Cheng and Chu (2004) and Qin and
Zhang (2005) studied the problem of kernel density estimation under model (1) with m = 2. The bandwidth selection
criterion of Cheng and Chu (2004) is based on a least square cross validation scheme, whereas resulting density
estimators are employed for a goodness-of-fit test of the two-sample density ratio model, using the L, norm of the
difference between semiparametric and nonparametric kernel density estimators. They also showed that their proposed
semiparametric density estimator not only is consistent, but also has the “smallest” asymptotic variance among general
nonparametric kernel density estimators. Qin and Zhang (2005) used an iterative approach to select the bandwidth and
established asymptotic normality of estimators.

This paper is organised as follows. In Section 2 we recall the estimation method of the finite dimensional parameters
in model (1) based on the empirical likelihood approach (see Qin, 1998 and references therein). Section 3, in connection
with the theory of Section 2, sets forward projection density estimators of the unknown probability density functions.
Section 4 relates to some asymptotic results of the discussed estimators. In particular, we demonstrate that, when the
projection basis is chosen in such a way that the Fourier coefficients decay fast enough, the proposed estimator performs
better than the semiparametric kernel density estimator. Simulation results are presented in Section 5 to study the finite
sample performance of our proposed estimators, and an application of the methodology to real data is also given. Some
concluding remarks are provided in Section 6. Finally, proofs of theoretical results are given in the Appendix.
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2. Inference in density ratio model

Consider the m samples with corresponding densities that satisfy Eq. (1), letn := ) _/_ n; be the total sample size and
consider the empirical likelihood (see Owen, 1988, 2001) based on the pooled data {x;;, j=1,..., n;, i=1,..., m}

ny np Nm
LO,Gn) = nplle(xU,Hl) npzjw(mj,@z) ~~Hpmj,

j=1 j=1 j=1

where p;; := dG,(x;;) and 0 = o, ..., 0;1_1)‘ is a (m — 1)d-vector.

Hence, the log-likelihood is written as follows:

m n; m—1 n;

10.p) =" log(pij) + Y _ Y _log{w(xij. 0;)}, )

i=1 j=1 i=1 j=1

where p .= {p;;,j=1,...,n;,i=1,...,m}

Maximisation of Eq. (2) is carried out by employing the two-step profiling approach described in Qin and Lawless
(1994). This procedure relies on first maximising the nonparametric part in the full likelihood function with 0
fixed, and then maximising the profile log-likelihood function with respect to . The profile log-likelihood is then
1(0) = suppe%l((?, p), where p is constrained to the set

m n; m nj
Co={peR Y Y pj=1Y_ > pijlwi.00) -1} =0, k=1,....m—1

i=1 j=1 i=1 j=1

The maximisation uses the method of Lagrange multipliers, and it follows that if the set % is not empty,

, 1 1
pij(4,0) = — — ,
n 14+ Y0 w0 — 1)
where 1 := {4, k =1, ..., m — 1} is the vector of the Lagrange multipliers determined by the following equations:

m n; . _
Y wxij, ) — 1 0, k=1.....m—1.

iz Lt S w, 0) — 1)

3)

It turns out that the vector of the Lagrange multipliers is a continuously differentiable function of the parameter 6,
hence Eq. (2) becomes

m n; m—1 m—1 n;
10, 2(0) = =) ) log [1 + D O (wlij, ) — 1}} + ) > loglw(xij, 0)] — nlogn.

i=1 j=1 k=1 i=1 j=1
Under some regularity conditions (see Fokianos, 2004), as n — oo, 6 and 4 = A(0) exist, are consistent, satisfy the

following system of estimating equations:

g

210, 1) ml AOw (x;j, Ox) /00 Ollog{w (xg;, 0i)}]
- + =
00 ZZ 14+ 0 w (g, 0) — 1) Z 00k

O’

i=1 j=1 j=1

al(0, ), L e ijs 0) — 1
0.5 _ gy W, ) =0, k=1,....m—1
0k L+ 37570 Afw(xgg, 0) — 1)

i=1 j=I
and are asymptotically normal. So we can obtain the following maximum likelihood estimator of G,,:

m n;

ém(x)=ZZﬁjﬂ(xij<X)=%Zi 1 T(xij <),

i=1 j=1 i1 =11t Z}n:_llil{w(xij, 0 — 1}
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where 1 denotes the indicator function and p; j = Dij (/):, /9\) is obtained by (3). As a consequence, fork=1,...,m — 1,
the maximum likelihood estimator of G (x), say G (x), is obtained by

Gi(x) =Y 3 pijwlxij, 01 (xij <x).

i=1 j=I

To sum up, a profiling procedure gives us the score estimating equations for the finite dimensional parameters and the
nonparametric estimators G (x), k =1, ..., m for the unknown distribution functions.
We now turn to the question of semiparametric density estimation based on the above inference output.

3. New semiparametric density estimators

Although the problem of density estimation can be addressed by considering a crude histogram (see Fokianos et al.,
1998), a smooth density estimator will be in general more preferable.

Cheng and Chu (2004), Fokianos (2004) and Qin and Zhang (2005) propose semiparametric density estimators by
modifying classic kernel density estimators (essentially by smoothing the increments of G;,i =1, ..., m).

Another smoothing method is obtained by projection. It consists in projecting the density to estimate on a finite
dimensional space (for example, the one generated by the first components of a basis of the space of possible densities)
and estimate this projection by a moments method (see Cencov, 1962).

In the following, we will design the pooled data (xi1, ..., X14,, ..., Xmn,) by (?1,...,%;). We suppose that for
[=1,...,m,the Ith sample admits the density g; with respect to u such that g; € L?(x), where p is a finite measure.
Let (¢;) jen* be some orthonormal basis in the separable infinite-dimensional Hilbert space L?(w). Since any orthogonal
basis with bounded basis vectors may be normalised, the use of orthonormal bases is a matter of convenience rather than
restriction. For any g € L?(u), the sequence of its Fourier coefficients (a ) jenr 1s the unique sequence of parameters

defining g, since any function g € Lz(u) is uniquely represented by its series expansion,
o0
g =2 ajej.
j=1

where a; = (g, €j) 2 = J ge jdu, j=1. In this work, we will denote by a; the jth Fourier coefficient of the density
function g,,.
The classic projection density estimator (see Cencov, 1962) for g, = Zj’c’: 1aje; is

k’lm
gmnm = Zaj,nmej, “4)
j=1
where (kp,, ) is a truncation index sequence such that k,, = o(n,) and (k,,) 1 oo when n, 1 o0.aj,, =
1/ nm)Z?zle j(xmi) is the unbiased estimate of the jth Fourier coefficient a;. We assume throughout the paper
that the basis (ej)jeN* is uniformly bounded (such that IM < oo : sup; llejlloo < M).

However, in order to estimate more efficiently g,,, one can merge the information coming from the m samples (instead
of only from the last one) whose densities are linked by model (1). Here, every #; is associated to a p;, i =1,...,n
(after a rearrangement of (3)), which is estimated by the empirical likelihood method. We recall that the p; verify
Y, pi = 1. Our modified projection density estimator of g, is then

kl‘l n
2, = Zaj,nej with @) ,, == Z pie;(t), )
j=1 i=1

where (k) is such that k, = o(n) and (k) 1 oo whenn 1 co. An empirical choice of (k) is proposed at the end of this
section. Furthermore, Eq. (5) is a semiparametric density estimator since it depends on both the unknown distribution
function and the parameters of model (1).

We show that, if we are able to choose a suitable projection basis (e;) jeN* (i.e.,if (ej) jeN* is such that the decrease
of Fourier coefficients of g, is strong enough), then the asymptotic mean integrated square error (AMISE) of the
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estimator defined in (5) can be close to 1/n (see Corollary 4.3). This rate (almost a “parametric” one) is better than the
one obtained by the kernel estimation method, both in the cases of classic and semiparametric density estimation (see
Cheng and Chu, 2004; Fokianos, 2004; Qin and Zhang, 2005).

We deduce projection estimators for the other densities g;,/ =1, ..., m — 1 as follows:

kn n
@n = Z’a\j,nej with 51-”1 = Zﬁiw(t,', Ql)ej(t,-), I=1,...,m—1.
j=1 i=1

Obviously, these estimators enjoy the same asymptotic properties as (5).

__ We close this section by discussing how to select the truncation index kj, in practice. We want to find an optimal
k, (i.e., which minimizes the mean integrared square error (MISE)). We adapted an approach from Bosq and Lecoure
(1987, pp. 272-273). The basic idea is the following: if we state that MISE(k;,) is a strictly convex function (a reasonable
condition) which attains its minimum in kﬁpt, then, the quantity

A(ky) = MISE(k, + 1) — MISE(k,)
increases with k,,, and

kP = min{k, : A(k,) >0}. 6)
We have

o
Vky>1, MISE(ky) =Y E[@;,, —a;)’1+ Y a3,
j=1 J>kn

SO
T 2 2
A(ky) = El(ak,+1,, — ak,+1)71 — a4

We empirically approximate E[(a,+1,, — akn_H)z] by

n |, o ) 1
Var@;,) =Y — > | Pier, i) — — > Pieni) | ¢
= | ™ i=s(I—1)+1 L imsa—n+1 )
where s(l) := Zf{zlnk and s(0) := 0, and “1%,,+1 by Zz\,%nﬂ ,,- Finally, we obtain
m " s(l) | s() 2
7 . i~ ) I~ . =2
Aky) = Z n—1 Z Pzek,,Jrl(fz) - n_ ' Z Pjek,,ﬂ(f]) — Ak, +1,n"
=1 i=s(I—1)+1 j=s—1D+1

So, a natural data-based choice of (6) is
o { inf{k, <K : A(ky) >0},
" T\ K if A(ky) <0, Vk, <K,

where K <n is chosen by the user.

)

4. Asymptotic results
In this section, we consider the AMISE of the semiparametric projection density estimator g,,, (defined by Eq. (5))

as a measure of its global accuracy.
To study statistical properties of g, , it is useful to consider

kﬂ n
m, =Y djne; withdj, =Y pie;j(t;).
j=1 i=1
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Proposition 4.1. a; , is an unbiased estimator of a;.

Theorem 4.2. Under classical regularity conditions (see hypotheses in Fokianos, 2004, Theorem 1), we have

~ k
Ellgm, — gml* =0 (7) + Yk

J>kn

Theorem 4.2 reveals that large values of &, reduce bias but introduce substantial variance as opposed to small values
of the truncation index which lead to smaller variance but increased bias.
In the following corollary we study the AMISE of our estimator in three particular cases.

Corollary 4.3. Under conditions of Theorem 4.2,

() ifVj=1, laj| <vyj~P where y>0and p > %,then,fork,’f =nl/?p,

Ellgm, — gmll* = 01 72072),

(i) ifvj>1, |aj|<ocﬁ_j where o.> 0 and > 1, then, for k;; = logn

— 2logp’
~ logn
Elgn, — gml? =0 (i) .

n

(i) if o= 1/Vj > Jo, laj| =0, then, for any sequence (v,) 1 0o, it exists (k;;) such that,
—~ v
Flgm, — gnl* =0 ().
n

Corollary 4.3 means that a strong decrease of the Fourier coefficients (in case (i) with p > % and in cases (ii) and (iii),
included in case (i)) implies that a good choice of (k;) gives us a density estimator which reduces the AMISE when it
is compared with that of the semiparametric kernel density estimator (see Cheng and Chu, 2004; Fokianos, 2004; Qin
and Zhang, 2005). A strong decrease of the Fourier coefficients means that the user choosed a suitable projection basis
(ej) jeny with respect to the density to estimate. For example, one can obtain the rate in Corollary 4.3, part (iii) with
the trigonometric basis for “periodic” densities, or, more generally, if it exists K, such that g, belongs to the vector
space generated by e, ..., ek, -

We now give some examples of possible orthonormal bases. Kronmal and Tarter (1968) considered the sine system
on the interval [c; d].

. x—c
Sin T
I

}, i=1,2,...,

—c
the cosine system

X —=C

cos{/nd

}, j=0,1,...

and the full trigonometric system

xX—c xX—c
L, j ,8in q j s, j=12,00.
{ cos{]nd_c} sm{]nd_C” Jj

The normalised Legendre basis is obtained from the Gram—Schmidt orthonormalisation procedure applied to the power
functions 1, x, x2, ... on [—1, 1] (see Efromovich, 1999, p. 51).

Other classical choices of bases are possible: Hermite basis, Laguerre basis, Haar basis (see Conway, 1994; Hirdle
et al., 1998), etc.

One can also use a hybrid basis with the first few vectors from the normalised Legendre basis and consequent basis
vectors obtained from the trigonometric basis by the Gram—Schmidt orthonormalisation procedure, or, more generally,
“self-made” bases obtained by orthonormalisation of a set of privileged densities and then completed.
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Remark 1. Most of these bases have continuous components, so they are expected to yield better results when the
density to estimate is continuous; for the same reason, the Haar basis is expected to be appropriate when the density to
estimate is not continuous.

We presented some nonuniformly bounded bases; we underline that asymptotic properties shown in this paper are
not applicable to projection density estimators on these bases. Nevertheless, some previous works (see Aubin and
Massiani, 2003) demonstrated similar properties in a nonparametric context for simply bounded bases. Moreover, in
practice, this technical condition is not restrictive, since we consider only the first k,, components (ey, ..., ex,) of the
projection basis.

In the next proposition, we precise the AMISE of semiparametric and nonparametric projection density estimators
for the purpose of comparison.

Proposition 4.4. Under hypotheses of Theorem 4.2, for the same truncation index selection ky, if 3l <m such that
n; # 0, then

AMISE(gy,) < AMISE (g, )- (8)
The following proposition gives pointwise asymptotic expressions for the bias and variance of the semiparametric

density estimator g, (x). The corresponding results for the nonparametric projection density estimator 8m,,, (x) are
also provided.

Proposition 4.5. Under hypotheses of Theorem 4.2, if /ny_ ajej(x) — oo, for the same truncation index

selection ky, if 3l < m such that n; # 0, then J>kn
E@m, (¥) = gm(0) == ) aje;(x),
J>kn
E(Gm,,, () = gm(X) =~ D aje;(x), ©
j>kll
K 2
0, kﬂ
Var(gm, (x)) = / Py) Zej Me; ) | gm(y)du(y) +o (7) (10)
j=1
and
| [ d 2 .
Var(ém,,m x)) = / n— Ze-/ Mejx) | gm(y)du(y) +o (f) ,
m =
whereVy, p(y) = —————— < L

nn Y npw(y,0)

Propositions 4.4 and 4.5 show that the asymptotic bias of g, is the same as that of g, : however, the dominant
term of the asymptotic variance of g, is smaller than that of g, .

In Corollary 4.3, we showed that if the decrease of Fourier coefficients is strong enough, then g, performs better
(in terms of AMISE) than the semiparametric kernel density estimator. Similarly, the comparison between pointwise
asymptotic expressions for g,,,, (Egs. (9) and (10)) and those of the semiparametric kernel density estimator will depend
on the decay of Fourier coefficients.

5. Applications

This section deals with finite sample performance of different density estimators (projection and kernel, semipara-
metric and classic) and an application to two real data sets.

In practice, for projection density estimators, if the selected basis has a finite support, then the data would usually
have to be scaled to that support interval. Using the simplest linear transformation may require estimation of the
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data-supporting interval. Alternatively, one can use a nonlinear transformation that maps the whole real line to a finite
interval, for example, based on the function arctan(x). Using bases with unlimited support, such as the Hermite system,
eliminates the need for a transformation.

We consider orthonormal trigonometric and Legendre bases which are defined on [—1, 1]:

e trigonometric basis:

exr(x) = cos((2k — 1)7mx),

_
erlx) =5 k=1, {€2k+l(x) = sin((2k — Drx).

e Legendre basis:

1
QA= W= %/3 e3(x) =

These choices of bases suppose that we assume that the density to estimate g,, € L?([—1, 1]). More generally, by
a direct transformation, this implies that g;, is assumed to have a compact support. For example, this is not true for
a normal or an exponential distribution. Nevertheless, in practice, estimation of g, on an adapted compact set & is
enough. So, we have to transform our data in such a way that the support of the transformed data is included in [—1, 1].
For the sake of simplicity, we take .’ := [min; (#;), max; (#;)] in the semiparametric case and .’ := [min; (x;), max; (x;)]
in the nonparametric case, where (x, ..., x,,,) stands for the mth sample. So, we linearly transform the data:

min; (x;) — —1,

in the nonparametric case
max; (x;) — 1,

. . . min; (t;) — —1,
in the semiparametric case
max; (t;) — 1.
We estimate the density over [—1, 1] and make the inverse transformation to obtain the final estimator.
One of the drawbacks of the projection estimators of probability densities with respect to kernel ones is that they can
take negative values. To avoid this problem, we consider a slightly modified estimator §,§13 such that (see Efromovich,

1999)
Vxe s, gW(x) = max(0,gm, ().

renormalised in the following way:

gm,l (.X)

Vxe s, Box) = —m——
[ & (@) dt

fg\,(,%? is a better candidate to estimate gm since it is itself a density.

Moreover, f 8&m, (y)dy —> 1 and Vx such that g, (x) > 0, g, (x) — gmn (x) —> 0.

For projection density estimators, we choose the truncation index k;,, according to procedure in (7), with K =7. Such
a K is large enough to allow a real choice of k,,, but small enough to save computational time.

For kernel density estimators, we consider classic kernel estimators and semiparametric kernel estimators presented
in Cheng and Chu (2004), Fokianos (2004) and Qin and Zhang (2005). Selection of the smoothing parameter is carried
out by the empirical estimation of the optimal value given in Proposition 1, Part (b) in Fokianos (2004) or in Theorem
2, Part (b) in Qin and Zhang (2005). More specifically, according to Silverman (1986, p. 59), a data-based choice of
the bandwidth for the semiparametric kernel estimator (respectively, for the nonparametric density estimator) of g,
is given by the iterative procedure in Qin and Zhang (2005, formula 16) (respectively, Qin and Zhang, 2005, formula
14). We employ a standard Gaussian kernel and we take . := [min;(#;), max; (¢;)] in the semiparametric case and
& := [min; (x;), max; (x;)] in the nonparametric case.
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5.1. Simulations

In this section, we report a limited simulation study to illustrate the finite sample performance of the proposed
estimators. Our working model is that densities g1 (¢) and g»(¢) are related by

g1(1) = g2(t) exp{01 + Oxt}. (11)

We consider in this study two different cases (see Qin and Zhang, 2005, Section 5). Firstly, we assume that g1 (¢) is
the density function of a 4" (u, 1) distribution and g»(#) is the standard normal density function, so that model (11)

holds with 0; = —”72 and 0, = p. Secondly, we assume that g (x) = iexp —ﬁ is the density function of an ié‘j (;lz)
distribution and g>(x) is the density function of an &(1) distribution, so that model (11) holds with 8; = — log u and
0r=1-— i Here we aim to estimate in the first case the standard normal density and in the second case the standard
exponential density.

In our simulations, we consider y = 0.25, 0.5, 0.75, 1, 1.25, 1.5 in the normal case and = 1.25, 1.5, 1.75, 2, 2.25,
2.5 in the exponential case. For sample sizes of n; =n, = 100 and each value of y, we generate 500 independent sets of
combined random samples (x1, ..., Xn,, Y1, ..., Yn,) from the A47(0, 1) and .A4"(u, 1) distributions in the normal case
(respectively, from the &(1) and ﬁ(g@(i) in the exponential case).

Our purpose is to achieve two goals. Firstly, we want to compare g, (our semiparametric projection density estimator,
defined by Eq. (5) and based on case-control data yy, ..., Y4, X1, ..., Xu,) tO §2n2 (the nonparametric projection density
estimator defined by Eq. (4) and based on control data x1, ..., x,,) by examining their MISE. Secondly, we want to
estimate performances of the six following estimators:

e projection estimators on Legendre projection basis,
e projection estimators on trigonometric projection basis and
e kernel estimators

in the semiparametric and nonparametric (classic) cases.

Let g, be an estimator of the density g. The value of the MISE(g») is empirically approximated by the sample average
of the (estimated) Integrated Square Error I/STE(éz) over the 500 data sets. Here, given each data set, we approximate
empirically ISE(g>) = [ (g2 — g2)2 du by the quantity

P
. Smax — Smi .
ISE($) = % Y (220p) — g2(p))*,
i=0

where p =200, . = [Smin, Smax] s the interval support on which estimate the density and p; = Smin + %(Smax — Smin)-
This computation procedure is applied to each studied estimator.

Results are quite different if we estimate a normal or an exponential density.

In the “normal case”, Table 1 shows that (semiparametric) estimators g, are always better than the standard (non-
parametric) corresponding ones §2n2 in terms of MISE. The best of them seems to be the trigonometric projection

Table 1
Mean (standard deviation) of ISE(g,, ) and ISE (:g;z”z ) in the “normal case’: each value has been multiplied by 103

Legendre Trigonometric Kernel
2, 24.3 (31.6) 7.0 (6.4) 8.6 (8.0)
u
2, 0.25 23.1(37.3) 4.4 (3.7) 6.1 (8.4)
0.5 21.1 (36.5) 4.6 (3.7) 6.2 (8.5)
0.75 16.4 (32.1) 4.8 (3.6) 5.9(7.6)
1 12.6 (25.9) 5.5(6.9) 6.6 (7.5)
1.25 9.2(17.3) 5.9(7.5) 6.9 (8.0)

1.5 8.2 (14.0) 7.0(11.8) 6.9 (8.0)
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Table 2
Mean (standard deviation) of ISE| (§2”2 ) and ISE(§2H2) in the “exponential case”: each value has been multiplied by 103

Legendre Trigonometric Kernel

82,, 12.7 (14.4) 92.8 (22.7) 43.4 (19.0)
u

22, 1.25 5.8(6.8) 104.6 (20.9) 34.7 (12.9)
1.5 5.8 (6.4) 124.0 (27.1) 35.8(12.8)
1.75 5.8(5.6) 136.4 (28.2) 37.6 (14.7)
2 52(5.5) 151.4 (32.9) 38.1 (15.6)
2.25 5.7(5.5) 169.5 (37.5) 39.9 (14.5)
2.5 6.1 (5.5) 186.0 (41.9) 42.6 (17.1)

estimator, often well adapted when g2(Smin) & £2(Smax). Nevertheless, unreported simulation results indicate that
an Hermite projection estimator obtains lower MISE (= 1.5 x 1073). This is a not surprising result since the first
component of the Hermite basis is the density to estimate (a standard normal).

In the “exponential case”, summarised in Table 2, semiparametric estimators obtain smaller ISEs than the classic
associated ones. Nevertheless, this result does not hold true when we consider trigonometric projection estimators: an
explanation can lie in the fact that, in this particular case, the trigonometric basis is not well adapted since the density
to estimate is far from satisfying g2 (Smin) ~ g2(Smax)- SO, such a projection basis should not be chosen in this case.

Remark 2. These results do not contradict the inequality (8). First of all, this inequality holds when we select the same
truncation indexes; moreover, inequality (8) is an asymptotic result.

These results show that usually the semiparametric density estimator achieves a smaller MISE than that of the
corresponding nonparametric one. Moreover, if the projection basis is suitable, the semiparametric projection estimator
related to this basis obtains a lower MISE than that obtained by the semiparametric kernel estimator.

5.2. Data analysis
The six estimators discussed above are now applied to two familiar data sets.

5.2.1. Example 1—social quotient scores

As reported by Cheng and Chu (2004), Example 5.1, we consider the data consisting of social quotient scores of
ny =21 control children with learning disabilities and n; = 20 case children diagnosed as aphasics. Both of them were
enrolled in a speech therapy program. Social quotient scores of controls and cases are, respectively, x; = 56, 43, 30,
97, 67, 24, 76, 49, 46, 29, 46, 83, 93, 38, 25, 44, 66, 71, 54, 20, 25 and y;= 90, 53, 32, 44, 47, 42, 58, 16, 49, 54, 81,
59, 35, 81, 41, 24, 41, 61, 31, 20. Qin and Zhang (1997), Zhang (1999) and Cheng and Chu (2004) argue that model

g1(t) =exp{0; +102}g2(1)

can be applied to the data with g and g2, respectively, standing for the densities of y; and x;. The maximum empirical
likelihood estimate of (0, 0») turns out to be (0, 6>) = (0.396, —0.008).

Selection of the smoothing parameters for the kernel estimators is carried out as described above. Semiparametric
and classic kernel estimators of controls’ density were computed with bandwidth 10.77 and 15.04, respectively. The
iterative procedure for estimation of g in semiparametric and classic cases gives 9.97 and 11.58, respectively.

When we use Legendre basis, we compute the four projection estimators (g2, , g1,,, §2n2 .8 Ly ) with truncation indexes
(kn, kn, kn,, kn,) = (4,4, 3,5). These four truncation indexes are chosen according to procedure (7) with K =7 and
greater than 2. Similarly, when we use a trigonometric basis, we obtain (k,, ky, kn,, kny) = (3,3, 3, 4).

The curves of these density estimators are shown in Fig. 1. The left panel relates to estimation of controls’ density, and
the right one to estimation of cases’ density. Fig. 1 reveals that semiparametric estimators of g; are quite similar. Density
for social quotient scores of controls g> seems slightly positively skewed and unimodal. Moreover, semiparametric and
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Fig. 1. Example 1—social quotient scores: nonparametric (dashed lines) and semiparametric (solid lines) estimators for controls’ density (left side)
and cases’ density (right side).



2462

J.-B. Aubin, S. Leoni-Aubin / Computational Statistics & Data Analysis 52 (2008) 2451 —2468
Legendre Projection Estimators

Legendre Projection Estimators
020 - itk EHES U PR Lk EE bttt bttt 0.20 e ettt Eettt t t tt ottt ot bttt
!
0154 0.15
|
A
0.10 \ 0.10
0.05 0.05
000 9 mO00OMX XOKX HOOCOKX X0 X X XX X 000 - Wy w W v WYy Yy y
T T T T T T T T
5 10 15 20 5 10 15 20
Trigonometric Projection Estimators Trigonometric Projection Estimators
020 - WECTHRETE CHECCECCHGE T b tEt ot tt ot 020 - WMETETHEEE CHCCRMETL CtE ot Ttr ot bttt
0.15 015
0.10 0104 “
0.05 0.05
\\ 7 N
0.00 - EOOXOMUN DOKX MOOKK X M0 X-—--%T XX X 000 — ey vy WY Y WY
T T T T T T T T
5 10 15 20 5 10 15 20
Kernel Projection Estimators Kernel Projection Estimators
020 | MCTHTES Mt Certttt  t tt tttt ot tt ot 020 it Cit ettt ttt ottt t tt ot
0.15 0.15
0.10 0.10
0.05 005
000  WOOKOKX KX HOOBKX XX X T X XX X 0.00
T T T T
5 10

15

(left side) and VV-group’s density (right side).

20
Fig. 2. Example 2—times of image recognition: nonparametric (dashed lines) and semiparametric (solid lines) estimators for NV-group’s density
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classic estimations present relevant differences. This fact could suggest to us that the model is not appropriate to the
data. The same conclusions can be drawn for estimators of cases’ density gj.

5.2.2. Example 2—times of image recognition

Consider the real data set available from http://lib.stat.cmu.edu/DASL/Stories/FusionTime.html. The purpose is to
analyse how a visual information given before the experiment reduces time of recognition of the fusion of two images
made of random dots stereograms. One group of n1 =42 subjects (NV group) received no visual information about the
shape to recognize. A second group of ny = 35 subjects received a visual information (VV group). The data consist of
the times 7Ty and Tyy required to fuse the two images. After discarding an outlier for the NV group, Fokianos (2004)
argues that model

g1(x) = exp(0; + 0> log(x))g2(x)

can be applied to the data, where g| and g stand, respectively, for densities of Tyv and Tyy. Given this model, we
obtain (01, 02) = (—0.985, 0.623).

For kernel estimators of density g2, the iterative method for the choice of bandwidth converges to 0.47 for the
semiparametric estimator and to 0.60 for the nonparametric one. When we estimate the density of the NV group,
bandwidths are 0.61 for the semiparametric estimator and 0.60 for the nonparametric one.

When we use Legendre basis, we compute the four projection estimators @2",/8\1"»?2,,27?1”1) with truncation
indexes (ky, ky, kn,, kn) = (5, 3,4, 7). These four truncation indexes are chosen according to the same procedure as in
Example 1. For trigonometric projection estimators, we obtain (k,, k., kn,, kn ) = (3,3, 3, 4).

Left and right panels of Fig. 2 illustrate density estimators for NV and VV groups, respectively. First of all, we
underline that the choice of the trigonometric basis does not seem to be appropriate to these data. Indeed, observations
suggest that g (Smin) clearly differs from g(Smax). Contrary to the previous example, semiparametric and corresponding
nonparametric estimators have a similar shape. The data are positively skewed. In addition, Legendre projection
estimators reveal relevant differences between the two groups. Such differences are also visible when we employ
kernel estimators, but they are attenuated by irregularities. As observed in Fokianos (2004), semiparametric estimators
are smoother than the corresponding nonparametric ones.

6. Conclusions and perspectives

We consider the semiparametric inference problem that is related to the density ratio model by using the methodology
of empirical likelihood. This model presents some attractive features: for example, it relaxes several conventional
assumptions in the context of multisamples problems.

The contribution of this work is to study the asymptotic behaviour of a new semiparametric projection estimator of
the unknown probability density functions. This new estimator is obtained by merging information of all the m samples
and using the methodology of empirical likelihood. The proposed semiparametric projection estimator is shown to be
more efficient than the semiparametric kernel estimator for suitable projection bases, and it reduces the AMISE when
it is compared with that of the traditional projection density estimator, in the sense that, for the same truncation index
selection, the combined data provide estimates with the same asymptotic bias but with a smaller asymptotic variance.

The required computation for our approach can be accomplished by using the standard statistical software packages.
Nevertheless, we are developing an R package that provides an flexible interface to implement our methodology.

Some authors studied a data-driven version of the projection density estimator in a nonparametric context (see Aubin
and Massiani, 2003; Bosq, 2002, 2005; Picard and Tribouley, 2000). This estimator enjoys some local suroptimality
properties for the AMISE. An extension of this work can be the use of this data-driven estimator (instead of the classic
one) in a semiparametric context. In addition, large sample results of the discussed projection density estimators are
not proved, although asymptotic normality should be expected under fairly mild conditions. These developments will
be reported in the future.
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Appendix
Proof of Proposition 4.1.
n m
Eld)q] = E [Z piej (n)} =Y / Pp(x)e; (X )wi (x)gm (x) du(x),
i=1 =1

where p(x) = > with the conventions w(-, 0;) =: w;(-) and w,, := 1. So
1

1
= npwy(x)’

Elijl = [ ¢(ngn()dun) =aj. O
Proof of Theorem 4.2.

Elgm, — gmll* = ElZm, — &my 1> + Ellgm, — gmll* + 2E [ / @y — 8my) @my — &m) du]

=A+B+C.

We analyse the three terms of this decomposition separately.
Term A:

kn kn n
8my — &m, = Zej(~)@j,n —dj) = Zzej(')ej(l‘i)(ﬁi = Pi)-

j=1 j=li=1

Under classical regularity conditions (see hypotheses in Fokianos, 2004, Theorem 1), we have the existence and the
limit distribution of maximum empirical likelihood estimators,

Jn (?: f) — N0, W),

where the asymptotic covariance matrix W is defined in Fokianos (2004), Appendix. By using a first-order Taylor
expansion, we have

pi = pi + Op(n ),
SO,

-~ ~ 3/2 I 1/2 & 1 .

By — &m, () = Op(n ); ;jej(oej (t) = Op(n~"/%) ; (; ; ej (n)) ej().
But

n 1 n m
<; ej(h‘)) ej() — szglﬂ)

i=1 =1

Jj=1

as n — oo, where p; := limn%oo%, Vi<m.
S0, 8m, — &m, = Op(n—"/?), and it follows that term A becomes

Ellgm, — &m, I* = 0™ ").



J.-B. Aubin, S. Leoni-Aubin / Computational Statistics & Data Analysis 52 (2008) 2451 —2468 2465

Term B:
2
Elin, - gm I =E [ Z(a, —apes) = 3 ajes) | duc)
J>kn
kny 2
=& [ (L@ -apeo | awo (12)
j=1
ko
—2F / > @jn—apej() D are() | du() (13)
Jj=1 I>ky
2
[E/ > ajei) | due). (14)
J>kn
Observing that [ eje; du = d i, we have
i : ki
[ 2= apes) | aut) = 3 By~ B
Jj=1 j=1
o
=) Var(@;.).
j=1
Since Var(e;(#;)) < M? < oo for all j,iand
ZVaI(a] 2) <O ( ) ZZVar(ej(t,))
Jj=1 j=1i=1
terms (12)—(14) become, respectively,
kn 2 K
[E/ Y @jn—ape;() | dupry=0 (f) ,

j=1

kn
[ | Y= ape) Y aet) | auer=o,

j=1 I>ky

and

fEf > aje;() du()—Z fz()duo—Za

Jj>kn J>kn J>ky

So, term B gives
Ellgm, — &mll? —6( ) > al.
J>kn

Finally, since ferm A is negligible with respect to term B, the Cauchy—Schwarz inequality implies that the dominant
term of E[g,, — gm||* is always B = @ (%) + Zj>k'lajz. O
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Proof of Corollary 4.3. Under hypotheses of Theorem 4.2, we have

Ellgm, — gmll’ —@( ) > aj.

Jj>kn

Now, under different conditions on Fourier coefficients a;, we try to minimize E||g,, — gm > with respect to kj,.
: 2 2.2
@ 2ok, @5 S 2ok, V7S - Now,

1 1
i—2p N
> i< 1 21

~ ky 1
Elgm, — gull® = @( >+@< p_l)
n ky
n

and if we take k;f = nl/20 we have

Ellgm, — &nl* = 01 =20/20),

(ii)
doai< Y AP W\” expl=caknl.
J>kn J Zkn
where ¢] = - (1/[52 and cp =21log f3, (c1, ¢2 > 0). So Z/>k a?=0(e k), and Eligm, —gnl*=0 (kn>+(9(e_02kﬂ)

We are looking for a sequence (k;;) such that ba o e‘can that is a sequence such that log k" + c2k; ~ logn. As a

log" and e~k — %

kS log
hence =2 =

. . ~*
first approximation, we can take k; = o ” ,

Remark 3. For such a (/2*), we obtain the following result:
—~ logn
Ellgn, — gnl> =0 < £ )

(iii) (k,) 1 oo, so, for n large enough, Zpk a? =0, hence

~ k
Elgm, — gmll* =0 (—) :
n

Therefore, for any sequence (v,) 1 0o, it exists a (k;;) (for example, we can take k;; = ,/v,,) such that,
—~ )
Elgm, — gl =0(2). O
n
Proof of Proposition 4.4. We know by Theorem 4.2 that
AMISE(gm,) = AMISE(gm, ).
So, we study the MISE(g,):
MISE ) = [ Vat Gin, (60 + [EG, () = g (1) d.
First of all, we consider E(g, (x)):

kyp n kn n kn
E(Gm, ) =E [ Y " piejt)e;x) | =) E ( piej(m) ej(x) =) aje;(x).
i=1

j=1i=1 j=1 j=1
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So

E(Gm, (1)) — gm(x) =— Y _ aje;(x).
J>kn
Similarly, we have:

E(Gmy, () = gm(x) =— Y aje;(x).

J>kn
Then, we consider Var(g,, (x)):

2
n

kn kn
Var(Zm, (0) =Y | E[ Y piejtejx) | =B | Y piej(tie; (x)

i=1 j=1 j=1

We have
n kn 2 kn 2 m
STE[D piejiei) | = / PO D eie;) | gm() Y miwi(y) du(y)
i=1 j=1 j=1 =1
kn 2
= / PO D ei(ei ) | gm () du(y) (15)
j=1
and
n kn m kn 2
S [ 3 pesaresn | = om [p0) Do e wien ) due | - (16)
i=1 j=1 =1 j=1

Since Vi, p(t;) = O (1), then (16) = © (;—2) YL migi(x) asn — 0o, so it is negligible with respect to (15) = ¢ (’%)
gm (x). Therefore,

2

_ il 2
Var(gm,l(X))pr(y) Zej(y)e,/(X) gm(y) d#(y)JrO(;)- 17
j=1
By the same analysis, we get:
' 2
Var(g (x))—fi Xn:e'( )ej(x) () du( )+0(k—"> (18)
8my,, = o po iWe; &m(y) duly w )

We conclude the proof by noting that Vy, if 3] < m such that n; # 0, then

1 1
o <—. O
M + D2 mwi(y)  m

p(y) =

Proof of Proposition 4.5. According to the proof of Theorem 4.2, we have that

VX, B, () = gm(X) = Cp(n™ A = Y " aje;(x).
J>kn

Since \/nY_ .y, aje;(x) — 0o, then E(gm, (x) — gm(x)) = =3, aje;(x).
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Moreover,
Var(g;m,l x)) = Var((’g\mn (x) — gmn (x)) + Var(gmn (x)) + 2C0V(§mn (x) — gm,, (x), gm,, (x)).

Cauchy—Schwarz inequality implies

Var (g, (x)) <O (%) + Var(gm, (x)) + 20 (%) \ Var(gm, (x))

Since @ (}l) = o(Var(gm, (x))), we conclude that, for n large enough,
Var (g, (x)) ~ Var(gm, (x)).

Formulae 17 and 18 complete the proof. [
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