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Abstract

We consider estimation and test problems for some semiparametric two-sample density ratio models. The profile empirical
likelihood (EL) poses an irregularity problem under the null hypothesis that the laws of the two samples are equal. We show
that a ‘dual’ form of the profile EL is well defined even under the null hypothesis. A statistical test, based on the dual form of
the EL ratio statistic (ELRS), is then proposed. We give an interpretation for the dual form of the ELRS thrdivgihgences
and ‘duality’ technique. The asymptotic properties of the test statistic are presented both under the null and the alternative
hypotheses, and an approximation to the power function is deddoedte this article: A. Keziou, S. Leoni-Aubin, C. R.

Acad. Sci. Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un test de comparaison de lois pour des modeles a rapport de densités semi-paramétriqudsus considérons les pro-
bléemes d’estimation et de test a deux échantillon dans des modéles a rapport de densités semi-paramétriques. La vraisemblanc
empirique pose un probléme d’irrégularité sous I'hypothése nulle d’egalité des deux lois. Nous montrons qu’une forme «duale »
de la vraisemblance empirique est bien définie. Un test statistique, basé sur la forme duale de la vraisemblance empirique, es
ensuite proposé. Les propriétés asymptotiques de la statistique du test sont étudiées sous I'hypothése nulle et sous 'hypothés
alternative, et une approximation pour la fonction de puissance est déeuiteciter cet article: A. Keziou, S. Leoni-Aubin,
C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Version francaise abrégée

SoientXy, ..., X,, un échantillon de loiP etYy, ..., ¥,, un échantillon de loiQ. On considere le modéle a
rapport de densités semi-paramétriques suifgit) := explar + BFr(x)} 0U 6L := (ar, BF) € ©, un ouvert
deRR“. Nous considérons les problémes d’estimation (du parameter) et de test de I'hypothésg nigle- P.
La vraisemblance empirique pose un probléme d’irrégularité sous I'hypotheéseHyilldous montrons qu’une
forme «duale» de la vraisemblance empirique est bien définie, et nous proposons un test statistique basé su
la forme duale de la vraisemblance empirique. Nous obtenons la loi asymptotique de la statistique du test sous
I'nypothése nulle et également sous I'hypothése alternative. La loi asymptotique sous I'alternative est utilisée pour
donner une approximation de la fonction de puissance, ce qui induit une approximation desdales des
échantillons qui garantit une puissance voulue pour une alternative donnée.

1. Introduction and notation

In this Note, we consider the following problems: two-sample test for comparing two populations and estimation
of the parameters for some semiparametric density ratio models. We dispose of two sa&fples:X,,, with
distribution P andY1, ..., Y,, with distribution 0. We consider the following semiparametric density ratio model

do

dpr
where@% = (ar, ,3%) is the true unknown value of the parameter which we suppose to belong to some open set
® c R4 For simplicity, we sometimes write (6, x) instead of exfw + 87 r(x)}. r(-) is a known function with
values inR?. It often takes the form (x) = (x, x?,...,x%)7, and the model (1) is sometimes called ‘log-linear
model’ in this case. The supports of the two la@snd P may be known or unknown, discrete or continuous. For
statistical examples and motivations of the model (1), see e.g. Qin [15], Kay and Little [8] and Cox and Ferry [4]
and the references therein. When the two samplgs. ., X,,, andY, ..., ¥, are independent, Fokianos et al. [5]
present a statistical test, for the null hypothégis: Q0 = P or equivalentlyHp : 87 = 0, where the test statistic
is based on a ‘constrained’ empirical likelihood estimate of the parangetdsee Qin [15]) and an empirical
estimate of the limit variance. In the case when the semiparametric assumption (1) fails, the test commonly used
is the nonparametric Wilcoxon rank-sum test (see e.g. Hollander and Wolfe [7]). We expect it not to be powerful,
since it does not use the model (1). The empirical likelihood ratio statistic is not well defined under the null
hypothesisHg : Q = P (see Section 1.1 below). This problem has been observed also by Zou et al. [17] in the
context of a semiparametric mixture models with known weights (see Zou et al. [17] Theorem 1). We propose
to use, instead of the empirical likelihood ratio statistic, its ‘dual’ form (see (8)) (to perform a test of the null
hypothesisHo : Q = P) which is well defined regardless of the null hypothesis. Simulation results show that the
observed level of the test based on the statistic (8) converges (to the nominal level) better than the observed level
of the test proposed by Fokianos et al. [5]. Usiftglivergences and ‘duality’ technique, we give an interpretation
for the statistic (8), which allows us to give the asymptotic law of the proposed test statistic under the alternative
hypothesis. We apply this result to give an approximation to the power function in a similar way to Morales and
Pardo [11] who gave some approximations to power functiogsadif’ergences tests in parametric models. Duality
technique has been used by Broniatowski [1] in order to estimate the Kullback—Leibler divergence without making
use of any partitioning nor smoothing. It has been used also by Keziou [9] and Broniatowski and Keziou [2] in
order to estimate-divergences between probability measures (without smoothing), and to introduce a new class of
estimates and test statistics for discrete or continuous parametric models extending maximum likelihood approach;
the use of the duality technique in the contexpedivergences allows us also to study the asymptotic properties of
the test statistics (including the likelihood ratio one) both under the null and the alternative hypotheses. Recall that
a¢-divergence between two probability measugeand P, whenQ is absolutely continuous with respect®q is

(x) := explar + pFr(v)}, (1)
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defined by (Q, P) := [ ¢(dQ/dP)dP wheregy is a real nonnegative convex function satisfying) = 0. Note
thate (Q, P) is nonnegativep (Q, P) = 0 whenQ = P. Further, ify is strictly convex on a neighborhood of one,
theng (Q, P) =0 if and only if 0 = P; we refer to Liese and Vajda [10] for a systematic theory-afivergences.

The rest of the Note is organized as follows: we end this section recalling the estimation method proposed by
Qin [15]. In Section 2, we show that the irregularity problem of the profile empirical likelihood can be adjusted
in the context of model (1). We next give a regularized version of the profile empirical likelihood using duality
techniques. A statistical test, for the null hypotheis: Q = P, is then proposed. An other point of view at the
test statistic is given using-divergences and ‘duality’ technique. In Section 3, we study the asymptotic behavior of
the proposed test statistic under the null and the alternative hypotheses with independent samples, and we give al
approximation to the power function which leads to an approximation to the sample:giasdn1 guaranteeing
a desired power for a given alternative. In the sequel, we sometimes Ryfitestead of [ f(x) dP(x) for any
function f and any measurg.

1.1. The profile empirical likelihood (EL) and its irregularity under the null hypothegjs O = P

In the present setting, the estimation method proposed by Qin [15], which is based on the empirical likeli-
hood approach (see Owen [14,13,12]), can be summarized as follows. Férea®y, the empirical likelihood
of the two samplesXy, ..., X,,, and Y1, ..., Y,,, if they are independent, i&(6) := H?ilp(xi)ﬂ’;lzlq(Yj).
For simplicity, denote(ty, .. ., #,) the combined sampléXy, ..., X,y, Y1, ..., Yy,), Wheren := ng + ny. Since
qg(x) = m(9, x)p(x), then L(6) writes L(0) = ]_[;’zlp(z,-)]’[?:noﬂm(@, t;). For convenience we writg; in-
stead ofp(#;). Hence, the log-likelihood writeX6, p) := > i_;logp; + >_i_, 1109[m (6, 1;)]. The profile log-
likelihood (in®) is 1(0) := sup,cc, (0, p) Wherep is constrained to the s€} := {p € R, such that " ,pi=1
and)_"_; pilm(0, ;) — 1] = 0}. The EL estimate ofr, proposed by Qin [15], is thef:= argsupe [(9). Qin
[15] has proved that the estimatés optimal (in the sense of Godambe [6]), in the class of all estimates obtained
by unbiased estimating functions (see Qin [15] Theorem 3). For a give®, the profile log-likelihood (9) is
well defined (and finite) if and only if

there existy € Cy such thai (0, p) < oo. (2)

So, whengy # 0 and if P is not degenerate, using similar arguments to those in Zou et al. [17] Theorem 1, we
can show that there exists a neighborhooé;gfsay N (67), such that for alp € N (6r), the assumption (2) holds

asng — oo. Hencep € N (67) — [1(0) is well defined fomg sufficiently large. However, whe@ = P (i.e., when

Br = 0), then obviously the s& is empty for alld = (o, 7)7 € ® with @ £ 0 andB = 0. So, whenQ = P (i.e.,
when6dy = 0), there exists no neighborhodd(®r) of 67 such that the profile empirical log-likelihood function

0+ 1(®) is well defined on allv (67). Consequently the estimafeis not well defined also in this case. In the
following section, we will show, using some arguments of duality theory, that this problem can be adjusted in the
context of the model (1).

2. Adjustment of the profile empirical likelihood

If the assumption (2) holds, thé) is finite, and the unique ‘optimal solution’ (i.e., the valuepoivhich yields
the supremum of (9, p)), as an explicit expression &f¢) can be derived by a Lagrange multiplier argument and
the Khun-Tucker Theorem (see e.g. Rockafellar [16] Section 28). Hence, under condition (2), the equality

10) := Supl(G,p)=£2£{—;|O_g[n(l+k[m(9,t,-)—1])]+ Z log[m (6, 1;)] (3)

peCy i=no+1
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holds with finite values, and the unique optimal solutign, ..., p,) exists and it is given by; = n~1(1 +
Mm@, ) —1) 1 foralli =1, ..., n, wherex is the unique ‘dual’ optimal solution in (3). It is the solution i

of the equauonZl=1 r%#é?n){u = 0. In (3),log(") is the function defined of® by log(x) = logx if x > 0

andlog(x) = —oo elsewhere. The EL estimateof 6 writes thend := arg SURce infrer{— D "4 logln(1+
Mm@, ) — 1D+ Y _n0+1|Og[m(0,ti)]}. By differentiation with respect ta« and A, we can see by sim-

ple calculus that the Lagrange multiplirin (3) has the explicit solution.(6) = % which does not depend

on the data. Hence, the value of the log-likelihdgd in 6 is [(§) = —nlogn — >7_, log(1 + 2 [m(@, ;) —

1) + Y ,,41100[m (@, 1,)], and the EL estimaté can be written a8 = argsup.e{—nlogn — Y/ log(1 +

%[m(@, ) — 1) + Z;‘:noﬂ log[m (0, ;)]}. Under the null hypothesis{p : O = P, i.e., whengr = 0, the pro-

file log-likelihood () is not defined for someé (see Section 1.1 above). Hence, we propose to consider, instead

of 1(9), the ‘dual form”:14(8) := —nlogn — >_/_;log(1 + “[m (8, 1) — 1)) + >_7 —no+1109[m (6, ;)] which is

well defined for allo € & regardless of the null hypothes}$o Q = P, and to redefine the EL estimate as

0 := argsupce l4(0). Note that, under condition (2), we hade= 6 andi;(9) = 1(6). Now, we give an inter-

pretation to the ‘dual formS,, := 2W4(0) := 2[supcg la(6) + nlogn] of the empirical likelihood ratio statistic

2W () := 2[supg [(0) + nlogn] (associated to the null hypothesity : QO = P). First, denotep, := n1/no,

an = npy(1+ pp)~2, and letQ,, and P,, to be, respectively, the empirical measures associated to the samples

Yi,..., Y,, andXq, ..., X,,- By simple calculus, we can show that the statistiavrites as follows:

SnZzanguf{/fpn(evx)din(x)_/gpn(evx)dpno(x)}’ (4)

where f,, (6, x) := (1 + pn) log[m (@, x)] — (L + p,) log[1 + p,m (8, x)] + (L + p,) l09(1 + p,) andg,, (0, x) :=
”p" log[1+ p,m(0,x)] — Lton log(1+ pp). In (4), the sequenas, is a normalizing term and the second term can
be seen as an empirical esﬁmate of

SUD{/fp(f?,X)dQ(X)—/gp(é’,x)dP(x)}, (5)

0e®
where p := lim,_.« p» (Which we suppose to be positive, (0, x) := (1 + p)log[m (0, x)] — (1 + p)log[1 +

pm(®, )] + (1+ p)log(1+ p) andg, (¥, x) := 2 log[1+ pm (8, x)] — L log(1+ p).

On the other hand, using the so-called dual representatlmdwergences (see Theorem 2.1 in Keziou [9]
and Theorem 4.4 in Broniatowski and Keziou [3]) and choosing the class of functioas{x — ¢7 "(m(8, x));
6 € ®}, we can prove the equality

d
SUP{/fp(f),x)dQ(x)—/gp(O,X)dP(X)} =f <d1Q3>dP_ ¢*(Q, P), (6)
0e®

whereg? is the nonnegative real strictly convex function definedonby

(p; x):=1A+p) [x logx — 1+p |Og(l + px) + — |Og(l + p) +xlog(1+ p)] )

which is a member of the class gfdivergences. In other words, by (4), (5) and (&3,7,1Wd(é) can be seen
as an empirical estimate (which we dengtg Q, P)) of ¢*(Q, P), the ¢*-divergence betwee® and P, i.e.,
q@*(Q, P) := (2a,)~1S,. Since¢*(Q, P) is nonnegative and takes value 0 only wh@nr= P, it is reasonable to
perform a test that rejects the null hypothedig: O = P when the statistic

Sp = 2a,$*(Q, P) = 2ay, guf{/fpn(é’,X)din(x)—/gpn(é‘,X)dPno(x)} (8)
€

takes large values.
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3. Asymptotic behavior of the test statistic and power approximation

In this section, for independent samples, we give the asymptotic properties of the estifoitiee parameter
0r) and the test statistic (8) both under the null and the alternative hypotheses. As an application, we obtain
an approximation to the power function for a given alternative. In all the segu@, x) and f” (0, x) denote
respectively the gradient and the Hessiarf @it the poin®, for all x and any functiory. | - | denotes the Euclidean
norm. Letp,,, :=n1/n andpy, := no/n, and assume that,, — p1 > 0 andp,, — po > 0 whemn =ng+n1 — oo.
Denote alsdg(0) := an[Qny fo, (@) — Pnygp, (0)]. In all the sequel, for simplicity, we writ¢ and g instead of
fo andg, defined in (5). We give our results under the following assumptions: (A.1) There exists a neighborhood
N (0r) of 67 such that the third order partial derivative functigns— (83/86;89180k)f(6,x); 0 € N(67)} (resp.
{x > (33/89i39j89k)g(9,.x); 6 € N(0r)}) are dominated by some functiap-integrable (resp. some function
P-integrable); (A.2) The integral®| ' (67)|2, Plg’(07)|%, Q|f”(6r)| and P|g”(0r)| are finite, and the matrix
[Qf"(O7) — Pg"(07)] is nonsingular.

Theorem 3.1.Assume that assumptio(5.1)—(A.2) hold.

(@) Let B(or,n™Y3) := {0 € ©; |0 — 07| <n~/3}. Then asn — oo, with probability one,s(9) attains its
maximum value at some poﬁlin the interior of the ballB(67, n~1/3), and the estimaté satisfies’,, (9) = 0.

(b) V/n(@ — 67) converges in distribution to a centered multivariate normal random variable with covari-
ance matrix LCM = S~1vS~t where S = —Qf"(6r) + Pg"(6r) and V = p; }(Qf'(0r) f Or)" —
OFf'Or) Q' (0r)") + po L (P8 (07)8'O1)T — Pg'(Or)Pg'(O1)7).

(c) Under the null hypothesif : Q = P, the statisticS, converges in distribution to 2 random variable with
d degrees of freedom.

In order to give the asymptotic properties of the test stati§tiander the alternative hypothesis : Q # P,
we need the following additional assumption pertaining to the funcfiamdg defined in (5)

(A.3) The integralsQ(f (67)%) and P(g(67)?) are finite.

Theorem 3.2.Assume that assumptio(.1)—(A.3) hold. Then, under the alternative hypothekis: Q # P, we
have,/a, [(2a,)~1S, — ¢*(Q, P)] converges in distribution to a centered normal random variable with variance
o2(6r) = pol Q(f?) — (@)1 + Pl P (%) — (P2)4].

Remark 1. Using Theorem 3.1 part (c), we propose to reject the null hypothésisQ = P if S, > Xf(d), where

Xf(d) is the(1 — €)-quantile of they 2 distribution withd degrees of freedom. This leads to a test asymptotically of
level . The asymptotic result in Theorem 3.2 allows us to give an approximation to the power function for a given
alternative: for a giverr # 0, we obtain for the power functiof(0r) := Py, {S, > Xf(d)} the following approx-

imation (67) ~ 1 — FN(&*(/;T;) [(2a,) " x2(d) — H,(0r)]), where Fxr(-) is the cumulative distribution function

of a normal random variable with mean zero and variance &5)? := pu,[Qn, (£ (07)%) — (Qu, f 01))%] +
Py [ Pag(8(67)?) — (Pagg(01))?] and H,, (61) := Qny f (67) — Pnog(6r). Note also that the powes(6r), by the
asymptotic result in Theorem 3.2, tends to one; as oo, under the alternative hypothesi§ : Q # P.

Acknowledgements

The authors thank Professor Michel Broniatowski for his helpful discussions and suggestions leading to im-
provement of this paper.



910 A. Keziou, S. Leoni-Aubin / C. R. Acad. Sci. Paris, Ser. | 340 (2005) 905-910

References

[1] M. Broniatowski, Estimation of the Kullback—Leibler divergence, Math. Methods Statist. 12 (4) (2004) 391-409.
[2] M. Broniatowski, A. Keziou, Parametric estimation and testing through divergences, Preprint 2004-1, L.S.T. A — Université Paris 6, 2003.
[3] M. Broniatowski, A. Keziou, On the minimization @f-divergences on sets of signed measures, Studia Sci. Math. Hungar. (2005), in press.
[4] T.F. Cox, G. Ferry, Robust logistic discrimination, Biometrika 78 (4) (1991) 841-849.
[5] K. Fokianos, B. Kedem, J. Qin, D.A. Short, A semiparametric approach to the one-way layout, Technometrics 43 (1) (2001) 56-65.
[6] V.P. Godambe, An optimum property of regular maximum likelihood estimation, Ann. Math. Statist. 31 (1960) 1208-1211.
[7] M. Hollander, D.A. Wolfe, Nonparametric Statistical Methods, second ed., Wiley, New York, 1999.
[8] R. Kay, S. Little, Transformations of the explanatory variables in the logistic regression model for binary data, Biometrika 74 (3) (1987)
495-501.
[9] A. Keziou, Dual representation gf-divergences and applications, C. R. Acad. Sci. Paris, Ser. | 336 (10) (2003) 857-862.
[10] F. Liese, I. Vajda, Convex Statistical Distances, Teubner-Texte Math., vol. 95, Teubner, Leipzig, 1987.
[11] D. Morales, L. Pardo, Some approximations to power functiorg-divergences tests in parametric models, Test 10 (2) (2001) 249-269.
[12] A.B. Owen, Empirical Likelihood, Chapman and Hall, New York, 2001.
[13] A.B. Owen, Empirical likelihood ratio confidence regions, Ann. Statist. 18 (1) (1990) 90-120.
[14] A.B. Owen, Empirical likelihood ratio confidence intervals for a single functional, Biometrika 75 (2) (1988) 237—249.
[15] J. Qin, Inferences for case-control and semiparametric two-sample density ratio models, Biometrika 85 (3) (1998) 619-630.
[16] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[17] F. Zou, J.P. Fine, B.S. Yandell, On empirical likelihood for a semiparametric mixture model, Biometrika 89 (1) (2002) 61-75.



